由于知识发现是一门受到来自各种不同领域的研究者关注的交叉性学科,因此导致了很多不同的术语名称。除了 KDD外,主要还有如下若干种称法:“数据挖掘”(data mining),“知识抽取”(information extraction)、“信息发现”(information discovery)、“智能数据分析”(intelligent data analysis)、“探索式数据分析”(exploratory data analysis)、“信息收获”(Information harvesting)和“数据考古”(data archaeology)等等。其中,最常用的术语是“知识发现”和“数据挖掘”。相对来讲,数据挖掘主要流行于统计界(最早出现于统计文献中)、数据分析、数据库和管理信息系统界;而知识发现则主要流行于人工智能和机器学习界。
ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。ETL一词较常用在数据仓库,但其对象并不限于数据仓库。
ETL是构建数据仓库的重要一环,用户从数据源抽取出所需的数据,经过数据清洗,最终按照预先定义好的数据仓库模型,将数据加载到数据仓库中去。
简写为OLAP,随着数据库技术的发展和应用,数据库存储的数据量从20世纪80年代的兆(M)字节及千兆(G)字节过渡到现在的兆兆(T)字节和千兆兆(P)字节,同时,用户的查询需求也越来越复杂,涉及的已不仅是查询或操纵一张关系表中的一条或几条记录,而且要对多张表中千万条记录的数据进行数据分析和信息综合,关系数据库系统已不能全部满足这一要求。在国外,不少软件厂商采取了发展其前端产品来弥补关系数据库管理系统支持的不足,力图统一分散的公共应用逻辑,在短时间内响应非数据处理专业人员的复杂查询要求。